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Summary. The electronic spectra of the transition metal complexes CoF 2-, 
RhF 2- and IrF~- that occur in the solids CszMeF6 are calculated. Hartree-Fock 
and Dirac-Fock calculations followed by non-relativistic and relativistic CI calcu- 
lations respectively are used to study the influence of relativity and electron 
correlation. The calculated transitions are found to agree fairly well with experi- 
ment, the largest discrepancies arising from the neglect of differential dynamical 
electron correlation effects. 
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1 Introduction 

Ab initio computational methods based on the non-relativistic SchriSdinger equa- 
tion are nowadays applied quite routinely to describe the electronic structure of 3d 
and 4d transition metal complexes. In such calculatons the main problem is to give 
an accurate description of the large electron--electron correlation that is present in 
partly filled d-shells. The most conspicuous errors that arise from the use of 
a non-relativistic theory instead of a relativistic theory are caused by the neglect of 
spin-orbit coupling. This deficiency can, however, in most cases be accounted for 
by the use of a perturbative spin-orbit operator. 

In 5d transition metal complexes relativity leads to significant changes in the 
electronic wave functions compared to non-relativistically calculated wave func- 
tions. In these systems relativistic corrections are no longer small and the use of 
perturbation theory based on non-relativistically determined wave functions 
is more difficult. Methods that use non-relativistically determined orbitals as a 
one-electron basis for (approximate) relativistic configuration interaction (CI) 
calculations may need larger expansions to converge than methods that include 
relativity from the outset. 

In this work such a more rigorous approach is followed by employing a relativ- 
istic formalism throughout. The basic equation that we use is the Dirac- 
Coulomb-Gaunt  equation that implicitly includes all one-electron relativistic 
effects and the magnetic (Gaunt) correction to the Coulomb two-electron 
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interaction. We use the Dirac-Fock approach to obtain four-component spinors 
that are used to set up a determinantal CI space for subsequent relativistic CI 
calculations. We can thus treat relativity and electron correlation on an equal 
footing and study the influence and interplay of both on the electronic spectra. 

This method has previously been applied to closed shell group IV hydrides [1], 
a lanthanide complex [2] and recently to the PtH molecule [3]. We now study the 
properties of the MeF6 z - complex ions of cobalt, rhodium and iridium as represen- 
tative examples of transition metal complexes across the periodic table. These ions 
were chosen because experimental data (structures and electronic spectra) of all 
three ions are available. Since the metal ions belong to the same column of the 
periodic table, they have the same valence electron configurations which simplifies 
the comparison of the results. 

2 Theory 

We have performed various types of CI calculations using a determinantal basis 
built from the 4-component spinors obtained from DHF calculations. Below a 
short resum6 of the DHF method and CI method is given. Unless otherwise stated 
all calculations have been performed using the MOLFDIR program pack- 
age [4]. 

2.1 The D H F  method 

The starting point of our calculations is the Dirac-Coulomb equation 

H g ' = E t t ' ,  (1) 

N 

I / =  hl + Z g j, (2) 
i i < j  

where h is the one-electron Dirac hamiltonian 

h = V  V ' I 2  c(a 'p)  
[_c(a'p) (V-2c2) ' I2_1 ' (3) 

I2 and a are the 2 x 2 identity and Pauli matrices respectively, while the poten- 
tial V describes the interaction of the electrons with the fixed nuclear frame- 
work. A detailed description of this hamiltonian may be found is standard text- 
books [5, 6]. The electron-electron interaction, gij, is given by the Coulomb 
operator 

1 
g i j  =- - -  ( 4 )  

r i j  

and represents in this context the 0th order approximation of the full relativistic 
electron-electron interaction. A first order correction is provided by the Breit 
operator [7], which may be split [8] into a magnetic part, usually termed the 
Gaunt interaction [9], and a retardation part. 

Brcit ((Zi" ~j) (~i' V/) (~j- ~7j) Gaunt..~ retardation 
g~J = rij 2 - g~j g~J " (5) 
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Our computer program allows for the inclusion of the Gaunt interaction either in 
a variational or in a perturbative scheme. 

From the Dirac-Coulomb equation open-shell DHF equations can be derived 
in the same way as the non-relativistic Hartree-Fock equations [10]. By minimis- 
ing the (averaged) energy expression of a system with one open shell, we get the 
following set of equations 

FC=h+QC+Q°+eL °, F°=h+QC+aQ°+aL c, (6) 

QC = ~, Jk -- Kk, QO =f  y' Jm - Kin, (7) 
k m 

LC=Z Lk, L°=f  ELm, (8) 
k m 

Ji]j>=(i[g12]i>[j>, Kilj>=(i]g121J>li>, (9) 

L~[j>-=<ilQ°lj>li>+<ilj>Q°li>. (10) 

In these equations k and m are used to label closed and open shell molecular 
4-spinors respectively. The fractional occupation number (f)  of the open shell 
spinors and the coupling coefficients (a and e) are defined by the number of open 
shell electrons (n) and the number of open shell spinors (m) 

n re(n- 1)  1 - a 

f=m'  a=n(m- 1)' c~ = 1 - f "  (11) 

The DHF equations are expanded in a Gaussian type basis set. This basis sets is 
made up of two subsets describing the upper (large) components and the lower 
(small) components of the spinors. In order to get a correct representation of all 
operators these basses are chosen to be related by the kinetic or atomic balance 
relation [11]. For open shell systems the average of configuration energy is 
minimised after which the energies of individual states can be obtained by complete 
open shell configuration interaction (COSCI) [2] - diagonalisation of the 
CI-matrix of all possible configurations in the open shell manifold. 

2.2 The relativistic CI method 

We have developed a relativistic version of the restricted active space configuration 
interaction (RASCI) [123 method which can be used to improve the wave functions 
and energy differences found in the DHF (-COSCI) step. 

To describe the method it is convenient to write the Dirac-Coulomb-(Gaunt) 
hamiltonian in second quantised form. Using the generators of the unitary group 
Eij= ai + aj the hamiltonian can be written as 

H = ~ <i1 h [j) Eij +~ ~ (ijlg Ikl)(E~j Ekl-- Ell 3jk ). (12) 
i , j  i , j , k , l  

In this equation molecular spinors are labelled by i, j, k and l. The summation is 
restricted to the electron solutions, since we neglect any (virtual) positron-electron 
pair creation. We expand the many-electron wave functions in the determinantal 
basis {@~} defined above. The result is a matrix representation of the hamiltonian 
which can be expressed as a sum of 1- and 2-electron integrals multiplied by 
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coupling constants 7~ j] and is F~jk~, respectively. 

HI j =  ~ iJ 1 hij?ij q-'2 2 (ijlkl)F[~z, (13) 
i , j  i , j ,k,I 

with h~=(i[h[j) ,  ( i j lkl)=(ij lglkl) ,  ~'J i j = ( I i E i J l J )  and r U  _±  --ijkl-- 2 (IIEijEkz-- 
E.  ~kj [ J) .  

Since the matrix in general will be too large to hold in memory, we use the direct 
diagonalisation technique to Davidson 1-13] to find the desired roots. The main 
difference with non-relativistic direct C! methods is that the number of relativistic 
integrals is about 2 ~ times as large since each molecular orbital corresponds to two 
molecular spinors. Another complication is that the integrals in general will be 
complex since the hamiltonian contains complex operators. Thus the number of 
virtual spinors and the number of determinants that can be used is smaller than 
what is presently possible with efficient non-relativistic CI methods. Our direct 
RASCI code can at present handle expansions up to about 200,000 determinants 
using an active spinor space of about 100 spinors. 

In the RASCI formalism the spinor set is first divided in a core set, an active set 
and an external or deleted set, after which the active set is further subdivided into 
three sets (RAS1, RAS2, RAS3). By specifying a minimum number of electrons that 
has to reside in RAS1 spinors and a maximum number of electrons that may be 
excited to the RAS3 space, most conventional types of CI spaces can be defined. 

In the case of the MeF62 - ions the RAS1 set consists of the 36 fluorine 2p-like 
spinors, the RAS2 set consists of the 10 open Me nd-like spinors, and the RAS3 set 
is formed by the 46 virtual spinors with lowest spinor energies. Note that in this 
formalism the COSCI calculation mentioned earlier corresponds to a calculation 
solely in the RAS2 space, the RAS1 and RAS3 spinors being constrained to have 
occupations of one and zero respectively. 

In the present application the COSCI method is equivalent to the well known 
Ligand Field CI (LFCI) method in which all t~g e~ configurations with x + y = 5, the 
number of d-electrons, are taken into account. Complete diagonalisation of this 
small CI space is possible and gives a set of intermediary coupled wave functions 
and a first estimate of the dd-spectrum. 

The LFCI space is subsequently extended into  a Charge Transfer CI (CTCI) 
reference space by allowing single, double, triple, or higher excitations from RAS 1 to 
RAS2. These excitations mix (low-lying) charge-transfer (Me 3+, Me 2 +, Me +) states 
into the LFCI wave functions. The CTCI method is intended to treat the non- 
dynamical correlation or near degeneracy effects that may arise from the low-lying 
charge-transfer states. Formally the method provides for a properly dissociating 
wavefunction as well. Finally we must account for the fact that the calculations are 
based on one set of d-like spinors obtained in the DHF calculation for the average 
energy of all d 5 related open shell states. This set will not be optimal for the states 
with higher d-occupancy that arise in constructing the CTCI space. This deficiency 
may in first order be corrected by extending the CTCI space to include all single 
excitations out of the valence spinors of the CT states into the available virtual 
spinors. This approach has been succesfully applied before in non-relativistic calcu- 
lations on transition metal compounds [14, 15] and has been called, for obvious 
reasons, relaxed charge transfer (RCT) or first order (FO) CI method. 

In the present application the treatment of dynamical correlation by means of 
inclusion of double excitations into the RAS3 space is prohibited by the large size 
of the active space. 



Relativistic and electron correlation effects 451 

3 Basis sets 

Gaussian type basis sets were optimised to minimise the energy of the Me 4+ d s 
configurational average. Because no relativistic basis set optimisation program is 
available at present, we used the non-relativistic code ASCF [16] for this purpose. 
During the optimisation process the d-exponents were constrained to be a subset of 
the s-exponents. The advantage of applying these constraints on the d-exponents is 
that the primitive basis for the small component p-functions, as obtained by kinetic 
balance, is already contained in the small component functions that arise from the 
large component s-functions. The f-exponents were similarly constrained to be 
a subset of the p-exponents, to keep the number of small component d-functions as 
low as possible. 

The non-relativistic exponent optimisation gives quite reasonable results apart 
from a deficiency in the basis for the Pl/2 spinors which lacks some steep basis 
functions. This deficiency was remedied by adding one extra tight p function to the 
Rh basis and two extra to the Ir basis. The exponents were determined by 
logarithmic extrapolation of the original set of exponents. 

Using these sets of primitive gaussians the atomic spinors of the Me 4+ ions 
were determined after which general contracted bases were formed consisting of all 
occupied spinors (ls, 2s, 2p, 3s, 3p 3d). The valence region is described at triple-zeta 
level by keeping two outer s-functions, one outer p-function and two outer 
d-functions uncontracted and by adding extra s, p, d and f diffuse functions. The 
uncontracted functions were kinetically balanced, the contracted functions that 
were obtained from the occupied spinors were atomically balanced. 

To describe the fluorine ions we used Wachters [17] primitive fluorine basis. 
The general contraction was based on a calculation on the F -  closed shell ion and 
the resulting triple-zeta valence basis was extended with 1 d polarisation function. 

The size of the basis sets is given in Table 1. The primitive basis sets of all ions 
are given in Appendix 1. Contraction coefficients are available upon request. 

Table 1. Basis set sizes 

Co (17s, 10p, 7d, lf; nrel. [6s, 4p, 4d, lf] 
lOs, 17p, lOd,7f, lg) rel.  [6s,5p,4d, lf; 5s,9p,7d,5f, lg] 

Rh (18s, 14p, 1 ld, 1J~ nrel [7s, 5p, 5d, if] 
14s, 18p, 14d, 1 lf, lg) rel. [7s, 8p, 7d, If; 5s, 12p, 9d, 7f, lg] 

Ir (21s, 15p, 13d, 7f; nrel. [Ss, 6p, 6d, 2f] 
15s, 21p, 15d, 13d, 7g) rel. [Ss, 10p, 9d, 3f; 6s, 14p, 12d, 9f, 3g] 

F (10s, 6p, ld; 6s, 10p, 6d, lf) nrel. [5s,4p, ld] 
rel. [5s, 4p, ld; 4s, 5p, 4d, if] 

4 Atomic calculations 

To investigate the quality of the basis sets we have compared the differences 
between the absolute energies at Har t ree-Fock and at Dirac-Fock level calculated 
respectively with the contracted basis sets and numerically with the program 
GRASP [18]. The basis set Har t ree-Fock calculations were done with the non- 
relativistic option of our program package MOLFDIR,  the numerical Har- 
t ree-Fock limit was obtained using a value of c, the speed of light, that was scaled 
by a factor of 10,000. 
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Table 2. Energy differences (eV) between numerical and basis set Dirac-Fock calcu- 
lations on the d" averages (n = 5,6,7). AE = E (Basis set)-E(Numerical) 

Non-relativistic Relativistic 

Co Rh Ir Co Rh Ir 

AE(Me ~+ ) 0.22 0.56 2.98 0.44 1.79 32.27 
AE(Me 3+) 0.26 0.54 3.00 0.47 1.78 32.28 
AE(Me 2+) 0.39 0.53 3.05 0.61 1.76 32.32 

Table 3. Energy differences (eV) between numerical and basis set COSCI calculations of the (relative) 
Me4+d5 energies 

Non -relativistic Relativistic 

Co Rh Ir Co Rh Ir 

Weighted average error 0.007 0.013 0.004 0.008 0.009 0.002 
Maximum error 0.013 0.026 0.008 0.015 0.018 0.005 

The weak singularity of the relativistic wavefunction at the nucleus formally 
disappears if one uses a finite nuclear model. Stil, the lack of very steep functions to 
describe the l s l /2  and 2p~/2 spinors in the vicinity of the nucleus causes an absolute 
error in the relativistic energies that is much larger than the absolute error in the 
non-relativistic energies. The energy differences between the different valence 
configurations are, however, quite satisfactory and accurate to about  0.2 eV (Table 
2). To study the effect of basis set errors on the d - d  spectrum we have performed 
COSCI  calculations based both on the numerical spinor set and on the basis set 
spinor set. If  we compare the relative energies of the states in the d s manifold we 
find that the differences between both calculations are small: maximally 26 meV 
(Table 3). 

In the optimisation of the Rh 4+ energy two s- (and therefore also two 
d-functions) ended up with almost the same exponential parameter  (0.4435 and 
0.3888). Such a close spacing is not very efficient and may give numerical inaccu- 
racies in the molecular calculations. We therefore substituted for the latter 
primitive function a function with exponent 0.1803 (obtained by logaritmic extra- 
polation). This explains the somewhat larger deviations from the numerical results 
in the Rh 4+ spectrum (Table 3). 

The tables show that the basis sets give a good description of the different 
oxidation states of the metal ions, but they do not test the validity of the COSCI  
approach to calculate accurate spectra. Comparison with experimental data is 
desirable but is hampered by the scarcity of spectral data for the higher oxidation 
states of the metal ions. Excitation energies for the 4 + ions are only available for 
cobalt [19]. Comparison with the Me 2 + electronic spectrum is possible for both 
cobalt and rhodium [20] (Table 4). 

The relativistic COSCI  method gives a good description of the intramultiplet 
spin-orbit  splittings, except for the very small splitting of the 4G excited state of 
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Table 4. Relativistic COSCI spectrum of the Co 4+, Co 2+ and Rh 2+ free ions. Energies (eV) given 
relative to the ground state. Intramultiplet splittings (meV) are given in parenthesis 

State Co 4+ State Co 2+ 

Exp. [19] COSCI Exp. [20] 

Rh 2 + 

COSCI Exp. [20] COSCI 

685/2 0.00 0,00 4F9/2 0.00 (0) 0.00 (0) 0.00 (0) 0.00 (0) 
4G11/2 4.61 (0) 5.21 (0) 4F7/2 0.10 (104) 0.10 (103) 0.27 (266) 0.26 (256) 
469/2 4.62 (9) 5.21 ( - 1) 4F5/z 0.18 (180) 0.17 (179) 0.43 (432) 0.42 (424) 
4Gv/2 4.62 (9) 5.20 (-- 14) 4F3/z 0.23 (231) 0.23 (232) 0.54 (536) 0.53 (532) 
4Gs/2 4.63 (11) 5.21 (6) 4P3/2 1.88 (0) 2.41 (0) 1.36 (0) 1.85 (0) 
4p3/2 5.05 (0) 5.99 (0) 4P5/2 1.91 (28) 2.44 (32) 1.37 (8) 1.85 (--2) 
4P5/2 5.07 (17) 6.00 (16) 4P1/2 1.96 (76) 2.48 (78) 1.55 (183) 2.02 (170) 
4p1/2 5.09 (34) 6.02 (36) ZG9/z 2.11 (0) 2.40 (0) 1.74 (0) 1.91 (0) 
4Dr/2 5.54 (0) 6.48 (0) 2Gv/a 2.20 (98) 2.50 (99) 1.89 (150) 2.17 (256) 
4D1/2 5.57 (25) 6.49 (14)  2H11/z 2.82 (0) 3.20 (0) 2.42 (0) 2.54 (0) 
4Ds/2 5.58 (34) 6.51 (35) 2H9/2 2.91 (89) 3.28 (82) 2.73 (250) 2.79 (250) 
403/2 5.58 (34) 6.51 (30) 
zI11/2 6.74 (0) 7.42 (0) 
2113/z 6.74 (5) 7.44 (16) 

Co 4 + where it reverses the order of the states. Note, however, that the main feature 
of d s multiplets, virtually vanishing spin-orbit splittings [21], is reproduced cor- 
rectly. The method does not deal very well with the intermultiplet splittings. This 
failure is understandable because at the COSCI level dynamical correlation effects 
are not accounted for. We may expect the same kind of errors in the molecular 
calculations. 

5 Cluster calculations 

5.1 Introduction 

In an ionic model we can describe transitional metal complexes as metal cations 
that are coordinated by ligand anions. In the complexes studied here we find 
fourfold oxidised metal ions with the configurations [Arl 3d 5, [-Kr]4d 5 and [Xe] 5d s 
for Co 4+, Rh 4+ and Ir 4÷ respectively. They are octahedrally coordinated by six 
fluorine anions. The lowest transitions in the electronic spectra of the complexes 
originate from excitations within the d 5 manifold of the metal ion. The influence of 
the surrounding ions can in such an approach be accounted for by an electric field 
of Oh symmetry that lifts the degeneracy of the metal d-orbitals. Many features of 
the electronic spectra can then be explained on basis of the symmetry of the field 
[22]. An assumption that is usually made in crystal field theory is that the radial 
character of the open shell d-like orbitals remains the same. With this assumption 
the spectrum may be fitted by the use of only a few parameters (10Dq, the Racah 
two-electron parameters B and C and optionally a spin-orbit parameter ~). This 
simple model can be refined by accounting for the radial difference between eg and 
t2g orbitals but this adds seven more parameters which is in most cases impractical 
considering the available experimental data. 

The unrealistic high formal charge of the metal ions treated here gives, how- 
ever, rise to difficulties with the interpretation of the electronic structure of the 
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complexes in a simple ionic model. Covalency will delocalise the ligand electrons 
and reduce the high formal charge to a more realistic value. In a molecular orbital 
picture the bonding and anti-bonding combinations of orbitals that are formed 
from the fluorine p-functions and the metal d-functions in the t2g and eg representa- 
tions give rise to charge transfer that makes the metal ion less positive and the 
fluorines less negative. In contrast to the electrostatic crystal field picture derived 
from the ionic model, the formation of covalent bonds can now be considered to be 
the main source of the perturbing field, which led to the development of ligand field 
theory. The covalent bonding will also introduce radial differences between the eg 
and t2g open shell orbitals since they contribute to a different type of bonding 
(G and rc respectively). These differences are again not taken into account, however, 
so that the parametrisation given above is maintained. Interestingly, it has been 
shown in earlier ab initio calculations of d-d transitions in iron fluorides and 
cyanides that, even when the differences are accounted for, the calculated energy 
levels can be fitted well in this parametrisation 1-23]. 

A discussion of the validity of the underlying ideas from an ab initio point of 
view is given by Vanquickenborne et al. [-24]. In ab initio calculations like the ones 
presented here, the orbital differences are of course accounted for since the orbitals 
are determined variationally. This means that the interpretation of the parameters 
of the ligand field model changes and direct comparison with experimentally 
derived parameters is difficult. In the relativistic calculations the situation is even 
more complicated. We now also have to consider the change in character of the 
orbitals under the influence of spin-orbit coupling. We will therefore in general 
follow a straightforward approach and compare the observed and calculated 
transitions directly. In some cases use of a crystal or ligand field model is, however, 
helpful for a qualitative analysis of the obtained results. 

5.2 Symmetry and configurations 

The five d-orbitals of the central ion are divided in two representations (% and t2g) 
in the octahedral (Oh) point group. The eighteen fluorine p-orbitals span a number 
of representations including eg and t2g (Table 5). 

In the relativistic calculations we will work with one-electron spinors. These 
functions span the "extra" representations of the full rotational (0(3)*) or the 
octahedral (O~) double group. For the free ions we find that the d-shell is split into 
a d3/2 and d5/2 subshell while the fluorine p-shells are split into pl/2 and P3/2 
subshells. 

The d3/2 spinors span the u'g representation of O* while the d5/2 shell is split 
over its e~ and u~ representations. These representations are of course also spanned 
if we reverse the construction of molecular double group functions and make 

Table 5. Orbitals and spinors in different symmetry groups 

0(3) 0(3)* o~ o* 

Central ion d d312, dsl2 eg, t2g eg, 2Ug 
Ligands 6p 6pl/2, 6p3/2 alg, eg, tlg, t2g, 2%, eg, 3u'g, 

2h,, t2u 2e~, e~, 3U'u 
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Fig. 1. Relations between orbitals and spinors in different symmetry groups 

spinors as products of the eg and t2g orbitals with e or fl spin. We then see that the 
spinorbitals constructed from the eg orbitals span the U'g representation, while the 
spinorbitals constructed from the tag orbitals span both the U'g and the eg repres- 
entation. 

In Fig. 1 the relations between the different (spin)orbitals are given. In following 
discussions on the nature of the spinors and of the splittings we will sometimes 
loosely speak of t2g (or eg) spinors. This should be read as: "The set of spinors that 
can be formed from combinations of the eg (or t2g ) orbitals multiplied with an e or 
fi spin function". 

5.3 Computational details 

The splitting of the d-shell into 2 or 3 groups of spinors gives various ways of 
dividing the 5d electrons over the different representations. Optimising the energy 
of all states arising from the possible configurations by separate SCF calculations is 
in principle possible but impractical. Different spinor sets for all different states 
would result, implying separate 4-index integral transformations for all states in 
subsequent CI calculations, which would increase the computational effort con- 
siderably. The interpretations of such results would furthermore be more cumber- 
some because of the differences in spinor sets. Fortunately these complications can 
be avoided. 

Our goal is to obtain one set of spinors that gives a reasonable description of all 
states. The CI calculations are done (simultaneously) in this molecular spinor basis 

"for all states. To get a balanced description of all states we optimise our spinors for 
the weighted average energy expression of all configurations that can be made by 
distributing five electrons over the ten spinors that span the twofold degenerate e~ 
and the two four-fold degenerate U'g representations. This averaged energy expres- 
sion is equivalent to the non-relativistic weighted average energy expression of the 
(t2g) 5-x (eg) x (x=0, 1 . . . . .  4) configurations. 
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To check the sensitivity of the results to the choice of the spinor set we have 
done some non-relativistic calculations on the 2T2g state of CoF 2 -. We studied the 
energy differences introduced by the use of different one-electon spinor sets for 
wave functions of different quality. We compare the set of spinors obtained by 
minimising the energy average of the d 5 configuration (set 1) with the set obtained 
by minimising t h e  (t2gS)2T2g energy expression separately (set 2). Since the tzSg 
configuration has a small weight in the total average and the % spinors are not 
optimised at all, these calculations are representative for the maximum differences 
one may expect from the use of different spinor sets for different states. 

In Table 6 we see that the influence of the spinor set diminishes as the level of CI 
increases. This can be explained by noting that the most important differences 
between the two spinor sets can be written as rotations between the closed and 
open shell tZg (and eg) spinors. In the CTCI calculations excitations from closed to 
open shell spinors are allowed, hence the differences between the results obtained 
with the two spinor sets get much smaller. The influence of the use of average 
spinors on the final results is probably smaller than 0.1 eV since the other states will 
also have a non-zero, negative, relaxation energy. 

Besides the use of one set of spinors for all states we had to use two other 
approximations to make the calculations feasible. 

The first concerns the level of excitation that is allowed in the charge transfer 
and first order CI calculations. The maximum excitation level for charge transfer 
excitations (ligand p and to metal d) is five, giving wave functions with a filled 
d-shell and five holes on the ligands. The weights of such configurations in the 
CTCI or FOCI wave function are likely to be small since the excitation energies 
involved are of the order of 3-5 eV per excitation level. This assumption was 
studied by calculating (non-relativistically) the convergence of the correlation 
energy of CoF~-  with an increasing level of excitation in the Charge Transfer CI 
(Table 7). We see that beyond the triple excitation level no significant changes in 

Table 6 .  2T2g energy expectation values calculated non-relativistically with 
different spinor sets and CI spaces. The uncontracted basis without Co f and 
fluorine d functions was used 

Wave functions E (Set 1) (a.u.) E (Set 2) (a.u.) Difference (eV) 

Single determinant - 1992.0945 - 1992.1166 -0 .60  
LFCI -1992.1105 -1992.1291 --0.51 
CTCI - 1992.2005 - 1992.2051 -0 .13 

Table 7. Contributions to CoF62 - CTCI correlation energies (eV) with increas- 
ing level of of excitation. The uncontracted basis without Co f and fluorine 
d functions was used 

State Correlation Singles Doubles Triples Quadruples 

2T2g -2.45 -0.63 -- 1.37 --0.44 -0.01 
4Tlg -2.11 -0 .42 --1.36 -0 .33 -0.01 
4Tzg -- 2.36 -- 0.50 -- 1.49 - 0.36 - 0.01 
6Alg - -  1.17 --0.16 -0 .80  -0.21 -0.01 
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Table 8. Correlation energies (eV) of CoF 2 with different 
RAS1 spaces. Note that the figures cannot be compared to 
Table 7, because different basis sets are used 

State All fluorine p's eg and t2g Difference 

2T2g - -  1.67 - 1.54 0.13 
4Zig - 1.49 -- 1.38 0.12 
4 T 2 g  - -  1.74 -- 1.53 0.21 
6Alg --0.76 --0.71 0.05 

the spectrum occur. We also performed CTCI calculations that allowed triple 
excitations for RhF 2- and IrF 2 - but found these to be insignificant (contribution 
to the correlation energies smaller than 0.03 eV, differences in the spectra smaller 
than 0.008 eV). In the subsequent calculations we have limited the excitation level 
in the CTCI and FOCI to doubles. 

A second approximation was necessary to make the FOCI calculations com- 
putationally possible. Complete first order relaxation of the CTCI wavefunctions 
asks for a RAS3 space including all virtual (electron) spinors. This would lead to 
a determinantal space of more than 108 determinants, a few orders of magnitude 
larger than is presently feasible. We therefore restricted our RAS1 and RAS3 space 
to virtual spinors of eg and t2g type, since relaxation of the bonding and anti- 
bonding spinors in this representations is likely to be the most important. Relax- 
ation of the remaining fluorine p-spinors is neglected. 

The effect of restricting the RASl space to the subset of t2g eg spinors on the 
CTCI results was studied by comparing the density matrices from the LFCI and 
CTCI calculations in the full RAS1 space (Fig. 2). The figure shows that 
the dominant excitations do indeed involve the eg and t2g spinors. Comparison of 
the CTCI results in the full RAS1 (36 fluorine p-like) spinors with the results in 
the restricted basis (14 fluorine p-like) spinors confirms this observation as the 
latter calculation recovers most of the correlation energy at this level (Table 8). 

The final expansion space that was used in the CI calculations consisted of 
14 fluorine p-like spinors in RAS1, 10 Metal d-like spinors in RAS2 and 24 virtual 
spinors. This yielded a number of 13,482 determinants in the CTCI calculations 
and a number of 562,464 determinants in the FOCI calculation. By the use of 
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abelian point group symmetry it was possible to reduce these spaces to subspaces 
of at most 3,526 (CTCI) and 140,626 (FOCI) determinants. 

5.4 Crystal surroundings and cluster geometry 

The MeF 2- ions of cobalt, rhodium and iridium crystallise with a number of alkali 
cations to form perovskite structures. The compounds have a K2PtC16 likeostruc- 
ture in which the MeF62 - units are separated from each other by about 3.5 A. The 
other ions are found at distances slightly larger than 3 A from the fluorine ions 
(Fig. 3). 

Most experimental spectra available [25, 26, 27] concern the cesium com- 
pounds and are rather poorly resolved. In the case of IrF 2- more precise values for 
some transitions were obtained by Magnetic Circular Dichroism (MCD) experi- 
ments on CszGeF6, doped with CszlrF 6 [28]. 

To incorporate the effect of the surrounding ions on the spectra, we have 
described the surroundings of the IrF62 - cluster by fitting the Madelung potential 
of the host (after subtraction of the cluster contributions) to a number of point 
charges. This fitted potential was also used in the RhF 2- calculations since no 
precise value of the lattice parameter (a) of CszRhF 6 was available. In the CoF z-  
calculations we fitted the cluster corrected Madelung potential of the Cs2CoF6 
lattice. 

Both potentials vary slowly over the cluster (Table 9) and lower the spinor 
energies but d o  not dramatically influence the spectrum. Calculations on the bare 
clusters give spectra that differed by less than 0.2 eV from spectra calculated with 



Relativistic and electron correlation effects 

Table 9. Potential at lattice sites (Volts) 
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Position Cs2CoF 6 Cs2GeF 6 

Metal sites 9.25 9.00 
Fluorine sites 8.81 8.51 
Difference 0.44 0.48 

the embedded cluster. Other than electrostatic effects from the surroundings are 
assumed to be small and are not taken into account. 

The fit charges and the accuracy of the fits can be found in Appendix 2. 
The Me-F distance is not a fixed fraction of the basic lattice parameter (a). So 

knowledge of this lattice parameter alone is not enough to determine the distances 
within the MeF 2 - ion. Of the three compounds studied only the Cs2CoF6 struc- 
ture is completely determined experimentally. The Co-F distance was estimated to 
be 1.73 ( __ 0.05) A on the basis of X-ray crystallographic data [29]. Of the other two 
compounds only the Cs-Me distances are known. Recently, however, EXAFS data 
of the K2RhF6 and K2IrF6 crystals [30, 31] were published that give precise values 
for the Rh-F and Ir-F distance in these compounds. This distance is found to be 
1.93 A for both Rh-F and Ir-F. Since we did not have these values at the start-up of 
our calculations we also determined the distances by a geometry optimisation 
based on a 3 point parabolic fit of LFCI data (Table 10). These optimisations were 
carried out for clusters embedded in potentials as described above. As optimum 
distance we took the equilibrium distance of the lowest 2T2g (Eg) state. 

For CoF 2- the optimisation procedure gives a distance of 1.76 A, which is 
within the (wide) error range of the experimental distance. Miyoshi and Kashiwagi 
[32] have done non-relativistic SCF calculations on CoF 2- ground state using 
embedded and bare cluster models. Using the bare cluster model they found 
a distance of 1.79 A. With their most sophisticated model (which included the effect 
of the first two layers of surrounding ions as point charges) they found a distance of 

o 

1.77 A. These data show that the potential energy curve is almost entirely deter- 
mined by the intra-molecular interaction with the isolated CoF62 - complex and is 
not influenced much by the surrounding ions. 

The independence of the Me-F equilibrium distance on the surrounding ions 
implies that the optimisation process should give values close to Rh-F and Ir-F 
distances in K2RhF6 and K2IrF6. Comparing the calculated values in table 10 with 
the experimental values we find differences of 0.02 A. This is indeed the same order 
of accuracy as was obtained for the Co-F distance. However, the calculated Rh-F 
distance is shorter than the measured distance, while the calculated Ir-F distance is 
larger than the measured distance. This indicates that the 2 pm accuracy reached 
by simple LFCI geometry optimisations is somewhat fortuitous and may be less in 
other compounds. 

In the calculations presented in the next section we have used the experimental 
metal-fluorine distances of 1.730 A, 1.934 A and 1.928 A for cobalt, rhodium and 
iridium respectively. 

5.5 Analysis of the spinor set 

To get insight in the amount of covalency that is present in the complexes we have 
analysed the individual valence eg and t2g spinors by means of the Mulliken 
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population analysis scheme [33]. Since we used the same average of configuration 
energy expression to optimise spinors for the clusters as for the bare metal ions, we 
can also compare the calculated spinor energies to study trends in the spin-orbit 
splitting. The shifts that are found in the open shell spinor energies, going from 
Co to Ir, reflect the shifts found in the Me 4 + bare ions. 

From the population analysis (Table 11) it is clear that the eg orbitals show 
more metal-fluorine mixing than the t2g orbitals. This confirms the stronger 
covalency of the eg orbitals due to their capacity of forming a-bonds. The open and 
closed shell populations are almost complementary which supports the molecular 
orbital picture that is used in the Ligand Field model. The differences between the 

Table 11. Energies and Mulliken population analysis, a The highest 
closed shell eg (fig) spinors, b The open shell eg (fig) spinors, e The 
highest closed shell t2g(e~, fig) spinors, d The open shell t2g (e~, u~) 
spinors, e Mulliken charges of the atoms in the complexes 

eg (closed) E (eV) % Me (d) % F (s) % F (p) 

CoF~ - (NR) - 19.04 28.2 2.9 70.0 
CoF62- (R) - 18.93 27.6 2.8 69.6 
RhF62 - (NR) - 18.40 26.6 2.4 70.9 
RhF62- (R) -- 18.24 25.2 2.3 72.1 
IrF62- (NR) - 18.44 23.6 2.8 73.5 
I rF~-  (R) -- 18.06 21.7 2.5 75.7 

Table l lb.  

e~ (open) E (eV) % Me (d) % F (s) % F (p) 

CoF62- (NR) - 18.26 74.3 0.6 25.1 
CoF62- (R) - 18.14 75.0 0.6 24.4 
RhF~ (NR) -- 12.10 73.0 0.3 27.0 
RhF~-  (R) - 11.74 74.3 0.3 25.7 
IrF62- (NR) - 9 . 0 9  74.6 - 0 . 3  25.6 
IrF~ - (R) - 7.98 77.8 --0.5 22.5 

Table l lc .  

tzg (closed) E (eV) % Me (d) % F (p) % F (d) 

CoF62- (NR) - 17.44 10.7 88.5 0.8 
CoF~-  (R,e~) - 17.37 10.3 88,9 0.8 
CoF62- (R, u~) --17.42 10.4 88.8 0.8 
RhF~-  (NR) -- 16.88 13.9 85.3 0.8 
RhF62- (R,e~) - 16.76 12.8 86.4 0.7 
RhF62,- (R, u 'g)  -16 .83  13.1 86.2 0.8 
IrF~ (NR) - 17.01 14.4 84.6 1.0 
I rF~-  (R,e~) - 16.76 10.9 88.1 1.0 
IrF~ (R, u'g) --16.87 11.8 87.2 1.0 
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Table lld. 

t2g (open) E (eV) % Me (d) % F (p) % F (d) 

CoF62- (NR) -21.98 90.9 8.9 0.2 
CoF62- (R, %) -21.73 91.2 8.6 0.2 
CoF 2- (R, u'g) -21.86 91.1 8.7 0.2 
RhF62 - (NR) - 15.84 87.2 12.4 0.4 
RhF~- (R, e~) -15.30 88.3 11.2 0.5 
RhF6 ~- (R, Ug) -15.57 87.8 11.7 0.4 
IrF~- (NR) - 13.40 86.0 13.9 0.2 
IrF 2- (R, e~) -11.87 89.0 10.6 0.4 
IrF62- (R, Ug) -12.69 87.4 12.3 0.3 

L. Visscher and W. C. Nieuwpoort 

Table l ie .  

Charge Me Charge F 

CoF~ - (NR) 2.21 - 0.70 
CoF 2- (R) 2.20 -0.70 
RhF~ - (NR) 2.36 - 0.73 
RhF62- (R) 2.37 -0.73 
IrF~- (NR) 2.81 - 0.80 
IrF~- (R) 2.77 -0.79 

different compounds are too small to permit interpretation in terms of changes in 
covalency. 

The differences between the relativistic and the non-relativistic results may be 
explained by considering the symmetry aspects of the bonding. In the relativistic 
case there are two representations in which metal-fluorine d-p bonds may be 
formed. The u'g representation is spanned twice by the metal d-functions which 
means that different combinations can be formed depending on the strength of the 
spin-orbit  coupling. 

In the case of weak spin-orbit  coupling and strong bonding the u'g spinors will 
be combined into eg and t2g spinors and thus into a and 7t-bonds as in the 
non-relativistic case. Alternatively, in the case of a strong spin-orbit  coupling at the 
central a tom and weak bonding, the functions will tend to localise and resemble the 
atomic double group functions. The open shell Ug spinors will now be combined to 
form the d3/2 and four of the d5/2 spinors. The e~ representation then contains the 
remaining two d5/2 spinors. 

In other words: the construction of strong a-bonds is accompanied by a relativ- 
istic hybridisation energy that depends on the spin-orbit  splitting of the d-shell. 
F rom the spinor energies of Table 11 we can see that the first case applies here. The 
relativistic treatment splits the open shell t2g spinors into two groups but this 
splitting is much smaller than the t2g-eg splitting. If we compare this splitting with 
the splitting within the d-shell in the Me 4 + ions, we find that the atomic splitting is 
reduced to 54% in CoF6 z - ,  52% in RhF62- and 54% in I rF~-  The figures are close 
to the value of 60% that is obtained if pure t2g metal d-combinations are formed. 
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The decrease relative to this theoretical value can be compared with the results 
of a simple crystal field model to give information on the covalency of the 
compounds. If we assume that the open shell orbitals consist of metal d-functions 
only and that both the crystal field and the spin-orbit  interaction can be paramet- 
rised, we obtain the following matrix equation [34] for the spinor energies 

0 

0 --4Dq--½~a x / ~ a  I~( , , ' , , t~, ) l=el~k( . ' , , t~, ) l  , (14) 

0 x / ~ a  6Dq / \l~(u,,e,)/ \l~¢(u,,e,)/ 

5 ~a is the atomic spin-orbit  splitting (e5/2 -e3/z), while Dq can be obtained from the 
average energies of the sub configurations (see below). Upon diagonalising this 
matrix we find values of 62, 64 and 68% of the atomic spin-orbit splitting for 
Co, Rh and Ir, respectively. The discrepancy with the values found above is due to 
the delocalisation of the d-electrons. The open shell spinors are partly spread out 
over the fluorines, where a much smaller spin-orbit splitting (~2p=0.05 eV) is 
found. This delocalisation effect counteracts the increase of the percentage of the 
atomic splitting that would be expected from the increasing strength of the 
spin-orbit  coupling. Since the actual percentages remain fairly constant one can see 
that there is stronger participation of the d's in the bonding in the iridium complex 
than in the cobalt and rhodium complexes. 

The trend of increasing d-participation in the bonding is not directly reflected 
by the Mulliken charges of the complexes (Table 1 le). In such an analysis IrF 2- is 
found as the most ionic compound. This is mainly due to changes in the metal s- 
and p-occupations of the complexes. 

5.6 Configuration interaction 

The spinor sets presented above are used for various types of CI calculations that were 
described above. In addition we have done some calculations on the specific configura- 
tions to t~2 x e x (x = 0, 1,..., 4). A theoretical value for the crystal field parameter lODq 
was determined by the formula lODq = (E(t~g)- E(t2~g e4))/4 (Table 12) 

Table 12. Average energies (eV) for the t~XeX(x=0, 1,...,4) configurations, relative to the t25g average 
energy 

CoF6 2- RhF62- irF6 2- 

Non-rel. R e l .  Non-rel. Rel .  Non-rel .  Rel. 

t~g 0.00 0.00 0.00 0.00 0.00 0.00 
t2,4e~ 2.05 2.06 2.93 2.96 3.76 3.93 
t2g3eg 2 4.64 4.65 6.16 6.21 7.74 8.08 
t2g2e~ 7.77 7.76 9.67 9.75 11.95 12.45 
t2gle~ 11.44 11.40 13.48 13.57 16.38 17.03 

lODq 2.86 2.85 3.37 3.39 4.10 4.26 

lODq (Experimental) 2.52 2.54 3.04 



464 L. Visscher and W. C. Nieuwpoort 

The calculated values for lODq can be compared with experimental fits and 
show a rather large discrepancy. This may (partly) be explained by the invalidity of 
the simple crystal field model in covalent ions. The experimental fit has been done 
on assignments of states from the lower two configurations, since these are the only 
states that can be identified. The other transitions lie at higher energies where the 
much more intense charge transfer type excitations occur that obscure the weak 
(parity forbidden) d-d transitions. Among the observed transitions at low energy 
there is none that can be written in terms of only 10Dq. One always needs to fit the 
other ligand field parameters B and C as well. In this fit the ratio between B and 
C is usually fixed which means that a spectrum that in principle would need 12 
parameters (the 10 Griffith parameters, lODq and ~) is fitted with three free 
parameters. Calculation of B and C from our results gave rather different results 
depending on the energy-differences that were fitted. In CoF 2- for instance, the 
ratio C/B varied from 4.7 to 6.0 while in the experimental fit a value of 4.9 was 
taken. 

In order to calculate the splittings between the individual states one has to 
account for the configurational mixing within the d-shell. This mixing is included in 
all (LF, CT, FO) CI calculations that we have done. 

In Tables 13 a-c the results of these CI calculations are presented. We used the 
Coulomb operator to represent the two-electron interaction, except in the second 
series of LFCI  (C + G) calculations in which the Coulomb-Gaunt  operator was 
used. The column NR + SO gives the results of a non-relativistic calculation in 
which the spin-orbit coupling was accounted for in an approximate way (see 
below). In the other non-relativistic columns we have shifted the energies of the 
states by ~d. This allows for a better comparison with the experimental and 
relativistic figures where the zero-point of energy is the 2T2g (Eg) state instead of the 
weighted average of 2T2g (Eg) and 2T2g (U'g). 

The energy lowerings (Table 14) and the thereby induced changes in the 
spectrum that are found upon increasing the level of CI are most prominent for the 
CoF 2- complex. A multiconfigurational description is essential here, in order to 
obtain a correct representation of the lowest states. In IrF6 z- the dominant changes 
occur if we go from a description without spin-orbit coupling to one were this effect 
is included. The lowest states can thus be described by a simple LFCI wave 
function, provided that the spin-orbit coupling is accounted for. 

The calculated states of all three compounds can be described within an L-S 
coupling scheme. The spin-orbit splitting of the lowest doublet and quartet states 
in IrF 2 - is considerable but remains smaller than the inter-multiplet distances. The 
relativistic treatment lowers the doublet state relative to the quartet and sextet 
states. This is caused by interaction between the eg and the tZg (Ulg) spinors. The 
spin-orbit coupling pushes these two levels apart and thus lowers the energy of the 
t25g configuration relative to the ~2g*5-x,,g~x (x ~ 0) configurations. 

The latter effect can also be modelled with a perturbative ligand field model for 
the spin-orbit coupling. In this model we assume that the spin-orbit coupling 
matrix elements between the 2T2g , 4Ylg , 4T2g and 6Alg can be expressed in terms of 
the atomic spin-orbit parameter ~e. This spin-orbit parameter is obtained from 
a relativistical calculation on Me ¢+ by the relation ~d = 0.4 (e(d3/2)-e(ds/2)) with 

the Dirac-Fock spinor energy. We add this spin-orbit coupling matrix 3 5 to the 
diagonal matrix given by the LFCI energies of these states and rediagonalise. The 
results show good agreement with our relativistic LFCI results of CoF62- and 
RhF62-. The influence of the spin-orbit coupling is overestimated, because 
covalency effects were neglected in this model. In this simple model we furthermore 
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neglected interaction with other d s states which may also decrease the spin orbit 
splitting of the higher multiplets. 

The effect of the inclusion of the Gaunt operator in the hamiltonian was studied 
perturbationwise at the LFCI level. We used the set of spinors that were deter- 
mined at the Dirac-Coulomb level and thus neglected the effect of the Gaunt 
operator on the form of the spinors. The influence on the calculated splittings is 
small, giving as most significant result a decrease of the IrF 2- 2Tzg spin-orbit 
splitting of 0.025 eV 

6 Discussion 

Experimentally all compounds are found to have a 2T2g low-spin ground state. Our 
calculations confirm this assignment except for CoF 2-, where the 6Alg state is 
found to be the lowest state. This discrepancy with experiment is at least partly due 
to the neglect of dynamical electron correlation that also lead to the discrepancies 
with experiment in the atomic calculations. The sextet state is described signifi- 
cantly better at the Hartree-Fock-LFCI level than the doublet or quartet states, 
because the Pauli correlation is incorporated whereas the Coulomb correlation is 
not, at this level of theory [24]. Miyoshi et al. [36] have published non-relativistic 
calculations on this system that support this assumption. In their LFCI calcu- 
lations they find the 6Alg state lowest at 0.91 eV below the 2T2g state. When they 
incorporate a semi-empirical correction for the atomic correlation energies, em- 
ploying the method of Pueyo and Richardson [37], they find the 6Alg state 0.12 eV 
above the 2T2g state. 

An additional source of errors in the CoF 2- calculations is the uncertainty of 
0.05 ~ in the used experimental bond length. Variation of the bond length with 
0.02 A gives rise to variations in the calculated intermultiplet splittings of the order 
of 0.2 to 0.3 eV. Finally, the fact that we had to restrict the RAS3 space to include 
only a minimal number of virtuals will also contribute to the discrepancies. 

For the Rh and Ir fluorides we cannot give an estimate of dynamical correlation 
effects on the basis of atomic results because no experimental spectra of Rh 4 + and 
Ir 4+ are available. It is, however, likely that dynamical correlation effects will also 
influence the spectrum of these compounds. 

7 Conclusions 

The excitation energies of the cobalt (IV), rhodium (IV) and iridium (IV) hexafluor- 
ides can be fairly well described by the CTCI-FOCI treatment outlined in Sect. 2.2. 
The electron-electron interaction dominates the spin-orbit coupling for all com- 
plexes, so the calculated states can be interpreted as (spin-orbit split) LS-coupled 
multiplets. 

Calculated intermultiplet energy differences agree with experimental data 
to about 0.4eV in CoF 2- and to about 0.8 eV in IrF 2-. For these energy 
differences, non-dynamical correlation effects that arise from low-lying charge 
transfer states are found to be most important in CoF 2-, while spin-orbit effects 
dominate in IrF62-. The discrepancies with experiment can be explained by 
the influence of differential dynamical electron correlation effects that are largely 
neglected at the level of theory that we use here and to limitations in the RAS3 
space that was used. 
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T h e  i n t r a m u l t i p l e t  s p i n - o r b i t  sp l i t t ings  a re  n o t  m u c h  i n f l u e n c e d  by  c o r r e l a t i o n  
c o r r e c t i o n s .  T h e s e  sp l i t t ings  c a n  be  c a l c u l a t e d  to  g o o d  a c c u r a c y  in a l i g a n d  field C I  
ca l cu la t ion .  U s e  o f  a p e r t u r b a t i v e  m o d e l  to  ca l cu l a t e  t he  s p i n - o r b i t  c o u p l i n g  is a l so  
p o s s i b l e  in  t hese  d 5 i ons  a n d  gives  g o o d  resu l t s  for  t he  C o F  2 -  a n d  R h F 6  z -  ions ,  b u t  

o v e r e s t i m a t e s  t he  sp l i t t i ngs  in  t he  q u a r t e t s  o f  I r F ~ -  

Acknowledgement. This investigation was supported by The Netherlands Foundations for Funda- 
mental Research on Matter (FOM) with financial aid from The Netherlands Organisation for Scientific 
Research (NWO). Part of the calculations were performed on the National CRAY-YMP/464 supercom- 
puter at SARA, Amsterdam, using a grant from the National Computing Facilities Foundation (NCF). 

Appendix 1: Basis sets 

Table ALl. Exponents of the primitive gaussian functions 

Cobalt Rhodium Iridium Fluorine 

s 1084972.40 s 2731601.66 s 26668729.1 
s 162536.244 s 408859.481 s 3655468.76 
s 36991.6658 s 93307.3527 s 799486.001 
s 10477.4164 s 26379.9304 s 223307.569 
s 3418.40523 s 8563.26613 s 72755.38947 
s 1234.48863 s 3069.80285 s 26195.5709 
s 481.364201 s 1177.65743 s 10153.5021 
s 198.728746 s 472.694052 s 4066.33469 
s 20.7965155 sd 195.613241 sd 1660.71803 
s 0.145 sd 83.0173165 sd 695.762587 
sd 84.1211960 sd 35.8644033 sd 300.316974 
sd 25.1128635 sd 15.7285857 sd 131.207017 
sd 9.18340049 sd 6.92795231 sd 59.8738317 
sd 3.70926232 sd 3.01827958 sd 28.3242236 
sd 1.49235456 sd 1.19601332 sd 13.0883983 
sd 0.56778468 sd 0.44353579 sd 5.96839221 
sd 0.36051148 sd 0.18032814 sd 2.62206777 
p 2344.78030 sd 0.073 sd 1.06750738 
p 555.647128 p 54250.6937 sd 0.4219794 
p 178.863068 p 12847.3483 sd 0.13458954 
p 67.1082327 p 3042.43775 sd 0.0429 
p 27.3476842 p 986.433555 p 630825.605 
p 11.6614996 p 375.207531 p 150637.678 
p 4.77240079 p 157.689216 p 35971.4473 
p 1.99067313 p 70.4823506 p 8589.78338 
pf 0.79864849 p 32.7196868 p 2791.38561 
p 0.32 p 14.6128764 p 1066.37478 

p 6.75523649 p 446.084374 
p 3.06574636 pf 161.628290 
p 1.34905790 pf 58.0553565 
pf 0.56425188 pf 25.2728514 
p 0.236 pf 11.3439089 

pf 4.89293799 
pf 1.85277206 
pf 0.78292625 
p 0.27559172 

s 18648.5 
s 2790.77 
s 633.258 
s 178.599 
s 57.7896 
s 20.4555 
s 7.58796 
s 1.99213 
s 0.749854 
s 0.241845 
p 63.1253 
p 14.5012 
p 4.38233 
p 1.45355 
p 0.463237 
p 0.126578 
d 0.241845 
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Appendix 2: Fitted madelung potentials 

Table A2.1. Potential (V) of the CszCoF 6 lattice 
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Atom Position in lattice Number of 
coordinates equivalent 

positions 

Formal charge Fit charge Distance 
Co 
(i) 

to central 

Co (0.00, 0.00, 0.00) 1 4 + In cluster 
F (0.20, 0.00, 0.00) 6 1 -- In cluster 
Cs (0.25, 0.25, 0.25) 8 1 + 0.9812 
F (0.50, 0.30, 0.00) 24 1 -- -0.7679 
Co (0.50, 0.50, 0.00) 12 4 + 1.9598 
F (0.80, ,0.00, 0.00) 24 1 - 1.1527 
Cs (0.75, 0.25, 0.25) 24 1 + -0.7872 

0.0 
1.73 
3.86 
5.22 
6.30 
7.18 
7.39 

Table A2.2. Potential (V) of the Cs2GeF 6 lattice 

Atom Position in lattice Number of 
coordinates equivalent 

positions 

Formal charge Fit charge Distance to central 
Ge 

(~1 

Ge (Rh, Ir) (0.00, 0.00, 0.00) 1 4 + In cluster 
F (0.20, 0.00, 0.00) 6 1 - In cluster 
Cs (0.25, 0.25, 0.25) 8 1 + 0.9811 
F (0.50, 0.30, 0.00) 24 1 - -0.7718 
Ge (0.50, 0.50, 0.00) 12 4 + 2.0358 
F (0.80, 0.00, 0.00) 24 1 - 1.1269 
Cs (0.75, 0.25, 0.25) 24 1 + --0.8195 

0.0 

3.91 
5.26 
6.38 
7.22 
7.48 

Table A2.3. Accuracy (V) of the point charge fits of the Madelung potential 

Crystal maximum error average error 

Cs2CoF 6 0.0025 0.00004 
Cs2GeF 6 0.0024 0.00004 
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